
Regression Discontinuity Design
Joseph C Cappelleri, Pfizer Inc, Groton, CT, USA
William M Trochim, Cornell University, Ithaca, NY, USA

� 2015 Elsevier Ltd. All rights reserved.
This article is a revision of the previous edition article by W. M. Trochim, volume 19, pp. 12939–12945, � 2001, Elsevier Ltd.

Abstract

The regression-discontinuity (RD) research design assigns participants to treatment groups solely on the basis of a pretreat-
ment cutoff score, allowing the relative effect of treatment to be studied in participants who most need or deserve a particular
treatment. In this article a brief history of the design is given, the basic RD design structure is described, design considerations
and variations are highlighted (on cutoff selection, assignment variations, multiple cutoff points, multiple assignment
measures, treatment variations, and posttreatment measurement variations, internal validity, measurement error, statistical
power), and recent methodological developments are presented (on nonparametric statistical analysis, the ‘fuzzy’ RD design,
and design variations).

Definition

The regression-discontinuity (RD) research design is a quasi-
experimental method that can be used to assess the effects of
a treatment or intervention. Unique to the RD design is that
participants are assigned to groups solely on the basis of
a pretreatment cutoff score. The name ‘regression-disconti-
nuity’ comes from the fact that a treatment effect appears as
a ‘jump’ or discontinuity at the cutoff point in the regression
function linking the assignment variable to the outcome. In its
simplest form, the design has a pretest or pretreatment (the
assignment variable) measure, two groups (those scoring above
and below the cutoff), and a posttest or posttreatment (the
outcome) measure. More complex variations are also possible.

To many, the RD design initially seems counterintuitive.
Using a cutoff to assign participants to the program (or treat-
ment) group and comparison (or control) group creates
a pretreatment group nonequivalence that seems like it should
lead to selection bias. While the design does induce initial
nonequivalence, it does not necessarily lead to biased treat-
ment effect estimates. Instead of assuming pretreatment
equivalence (in measured and unmeasured means and vari-
ances) as the randomized experiment does, the RD design
assumes the two groups are equivalent in their pre–post
regression functions in the absence of a treatment effect. This
assumption can be tested.

The major attraction of RD designs is that they can be used
to estimate the effects of treatments given to those who most
need or deserve them – provided that need or merit is deter-
mined using a qualification score on the pretreatment assign-
ment variable (i.e., the cutoff) to experimental conditions, and
nothing else. Because the design does not require that some
needy or deserving individuals get assigned to a no-treatment
or comparison group, in some settings it may have ethical
advantages over experiments for assessing treatment effects.

History

In a 2008 special issue on RD methodology in the Journal
of Econometrics, Cook (2008) provided a detailed and

comprehensive history of the RD design in three academic
disciplines – psychology, statistics, and economics – which
covers the reinvention of the design across these disciplines and
the differential waxing and waning by discipline (Cook, 2008).
Applications of the RD design have also expanded to the health
sciences (Trochim, 1990; Trochim and Cappelleri, 1992; Cap-
pelleri and Trochim, 1994, 1995; Finkelstein et al., 1996a,
1996b; Linden et al., 2006; Zuckerman et al., 2006). Many
noteworthy contributions using the RD design have been made
in the 1960s (Thistlethwaite and Campbell, 1960), 1970s
(Goldberger, 1972; Wilder, 1972; Tallmadge and Horst, 1976;
Rubin, 1977), 1980s (Berk and Rauma, 1983), 1990s (Cap-
pelleri et al., 1991; Trochim et al., 1991; Mark and Mellor,
1991; Cappelleri et al., 1994; Reichardt et al., 1995; Aiken et al.,
1998; Angrist and Lavy, 1999; Berk and de Leeuw, 1999), and
2000s (Van Der Klaauw, 2002; DiNardo and Lee, 2004; Card
and Shore-Sheppard, 2004; Jacob and Lefgren, 2004; Ludwig
andMiller, 2007; Matsudaira, 2008; Wong et al., 2008; Van Der
Klaauw, 2008; Lalive, 2008; Lee, 2008; Gamse et al., 2008).

A growing number of books have featured the RD design. It
was first discussed by Campbell and Stanley (1963) and in
greater detail in books on social experimentation (Riecken
et al., 1974; Bennett and Lumsdaine, 1975). Later the RD
design was extensively discussed in texts on quasi-experimen-
tation (Cook and Campbell, 1979; Shadish et al., 2002) and on
evaluation (Judd and Kenny, 1981; Mohr, 1995). Trochim
(1984) wrote the first and, to date, only book devoted exclu-
sively to the method. With the dawning of the twenty-first
century several books discussed the RD design, presenting
updates on its methodology and applications, including (but
not limited to) books by Fleiss et al. (2003), Senn (2007),
Angrist and Pischke (2009), and Murnane and Willett (2011).

The Basic RD Design Structure

Figure 1 shows an example of the RD design using simulated
data to depict the case of a compensatory treatment – perhaps
a reading program designed to help students who initially score
poorly (defined as below the pretest cutoff) on a standardized
reading measure. The figure is a standard bivariate plot of
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posttest and pretest for 500 simulated participants. Data points
for the treatment recipients are represented with ‘þ,’ while the
comparison cases are ‘o.’ The cutoff value in this example
occurs at the middle of the pretest distribution (pretest¼ 50)
and is indicated by the vertical line. All students scoring below
50 are defined as needing compensatory training and get the
treatment, while the remaining (i.e., those to the right of the
cutoff) are assigned to the comparison (control) group.

The solid lines represent the straight-line regression of
posttest on pretest for each group. In the absence of a treat-
ment effect, the critical assumption is that the regression line
in the comparison group would continue to the left of the
cutoff into the treatment group region, as indicated by the
heavy dashed line. That is, if the reading program does not
work, then the observed treatment group regression line
would be where the dashed line is. The fact that the observed
treatment group line is displaced from this ‘expected’ line
suggests a treatment effect – treatment group participants
scored higher on the posttest (i.e., vertically) than would have
been predicted from the comparison group pre–post rela-
tionship. The size of the treatment main effect is estimated as
the vertical jump or discontinuity between the regression lines at
the cutoff, hence the name regression-discontinuity. Assuming
that higher scores on both measures indicate better perfor-
mance, one can conclude from the figure that the treatment
improved participant performance by the amount of the
vertical discontinuity.

In experimental designs random assignment assures that the
treatment and comparison groups are initially probabilistically
equivalent. Posttreatment differences can be then attributed to
the intervention. In the RD design one obviously does not
expect this kind of equivalence. Instead, it is assumed that the
relationship between the assignment variable and the outcome
is equivalent for the two groups – that is, the same continuous
regression line describes both groups. Thus, interpretation of
the RD design depends mostly on two factors: (1) that no
alternative cause could induce a discontinuity at the cutoff and
(2) that we can perfectly model the pre–post relationship.
These issues, particularly the second one, constitute the major

problems in the statistical analysis of the RD design (Trochim,
1984, 1990; Winship and Morgan, 1999).

Design Considerations and Variations

Selection of the Cutoff

The RD design requires that the assignment and outcome
measures be of sufficient quality of measurement to warrant an
appropriate regression analysis. The choice of cutoff value can
be made solely on the basis of available resources. For instance,
if a program can handle only 25 persons and 70 apply, then
a cutoff point can be selected that distinguishes the 25 most
‘needy’ persons from the rest. The cutoff can also be chosen on
substantive grounds. If the assignment measure is an indication
of severity of illness measured on a one to seven scale, relevant
experts might contend that all those scoring an average of five
or more are ill enough to deserve treatment. Therefore, a theo-
retically justified cutoff of five could be used.

Assignment Variations

A ‘sharp’ RD design has its pretreatment cutoff value followed
perfectly, without exception. While the use of a pretreatment
cutoff distinguishes the RD design, it is often difficult to
implement. In principle it does not allow room for profes-
sional judgment or discretion. In fact, the design does not
preclude incorporating such judgment so long as it can be
quantified or explicitly accounted for when specifying the
cutoff value.

Violation of the assignment rule leads to ‘misassignment’
and to what is often termed the ‘fuzzy’ RD design. Typically,
misassignment is most prevalent for ‘close call’ cases that fall
near the cutoff. For instance, teachers or parents may
successfully argue that students who just miss the cutoff for
a novel compensatory tutoring program should be assigned to
it based on grounds other than their assignment score. In the
fuzzy RD case, standard analyses will yield biased estimates of
treatment effect. While statistical procedures for dealing with
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Figure 1 Basic regression-discontinuity design for a compensatory treatment showing a positive effect.
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misassignment have been suggested (Trochim, 1984), mis-
assignment is better avoided if possible.

Multiple Cutoff Points
RD designs are not limited to a single cutoff value. In the
absence of treatment the assumption is that the pre–post
relationship can be described as a single continuous regression
line extending over the entire range of the assignment scores.
Even when multiple cutoff points are used, the comparison
group’s pre–post relationship is still used as the counterfactual
for projecting where other groups’ regression lines should be if
there is no treatment effect.

The simplest multiple cutoff case involves two cutoff scores.
In this variant, persons scoring above the higher cutoff might
be assigned to one treatment, those scoring below the lower
cutoff to another, and those scoring within the cutoff interval
might be controls. The assignment of treatments to each part of
the assignment distribution can be made in alternative ways,
including by random assignment. For instance, individuals
within the interval between the two cutoffs could be randomly
assigned to conditions, while those scoring below the lower
cutoff and above the upper cutoff are analyzed as from an RD
design (Boruch, 1973). Trochim and Cappelleri (1992) discuss
four other ways of coupling random assignment to RD design
features.

Multiple cutoff points are also involved in designs where
the treatment is implemented a series of times (i.e., in phases),
perhaps beginning with the most needy before successively
giving it to those less needy. In the first phase, one uses a single
cutoff value, assigning those most in need to the treatment and
then measuring posttreatment performance. Then, the cutoff
value would be moved to include the next most needy group
on the assignment measure. Eventually, everybody could
receive the treatment, but in groups ordered by need and phase.
This is particularly useful in organizations seeking to ‘roll out’
a treatment over time, but eventually serving all.

Multiple Assignment Measures
The requirement of strict adherence to the cutoff criterion
entails a single quantitative indicator. When this does not
capture the degree of pretreatment need well, Trochim (1990)
discusses two multivariate strategies. The first involves the use
of several separate measures, each having its own cutoff value.
This is most feasible when a prospective participant must meet
the different cutoff criteria on measure 1 ‘and’ measure 2 ‘and’
measure 3, and so on. Less feasible is an ‘or’ rule when
assignment depends onmeeting a fixed number of criteria from
a larger set – say, 5 of 10. The second involves assignment
according to a new variable that is a composite of several
individual measures. Using multiple measures this way can
help incorporate more judgment into a quantitative assign-
ment strategy.

Treatment Variations

When treatment comparisons are absolute, the control (or
comparison) group receives no formal or placebo treatment.
When they are relative, the comparison group receives an
alternative treatment, very often the current standard treatment
to which a new one is to be compared.

An advantage of the RD design is that it enables assign-
ment of progressively riskier treatments to those in greater
need. Assume three treatment programs: the standard plus
two increasingly riskier experimental ones. It is then possible
to have two cutoff points and to assign the riskiest treatment
to the neediest patients, the least risky (i.e., standard) treat-
ment to the least needy, and the moderately risky treatment
to those falling between the two cutoffs. (If no a priori basis
exists for making risk judgments, an alternative would be to
use a single cutoff and to assign those least in need to stan-
dard treatment while randomly assigning those on the other
side of the cutoff into one of the two experimental condi-
tions.) RD designs are flexible for examining treatment
variations.

Posttreatment Measurement Variations

In RD designs, pre and post measures do not have to be on the
same type of measure. For instance, one might assign persons
to a health education treatment on the basis of household
income but then examine its effects on attitudes toward health;
here the assignment variable is an economic indicator and the
outcome is a cognitive one.

The RD design is not restricted to a single outcome, and for
each posttreatment measure there can be a separate RD design
and analysis. However, it will often be useful to create an
aggregate outcome or outcomes. For instance, we may have
many knowledge items that are scaled to give a total (aggre-
gate) score, with subtest scores for mathematical reasoning,
computational skills, verbal reasoning, analogies, and so on.
We might then conduct separate analyses for both the total
score and each subtest.

Outcome measures need not be continuous normal vari-
ables. While such distributions facilitate RD analysis, they are
not necessary for it. For example, Berk and Rauma (1983)
evaluated the effects of a California law that extended unem-
ployment benefits to released prisoners who had not previ-
ously been eligible. In order to qualify, prisoners had to earn at
least $1500 working in the prison over the 12 months prior to
release. Would extending these benefits reduce subsequent
recidivism? A dichotomous outcome was created with 1 indi-
cating recidivism and 0, staying out of prison. To analyze this
outcome, Berk and Rauma (1983) relied on a linear random
utility model related to the binary logit model.

Internal Validity

Internal validity refers to the degree to which causal inference is
reasonable because alternative explanations for an apparent
treatment effect can plausibly be ruled out. The RD design is
very strong with respect to internal validity because the process
of selection into treatments is fully known and only factors that
would serendipitously induce a discontinuity in the pre–post
relationship at the cutoff can be considered threats. However,
validity also depends on how well the analyst can model the
true pre–post relationship so that underlying nonlinear rela-
tionships do not masquerade as discontinuities at the cutoff
point.

The RD design does not yield biased estimates of the
treatment effect when the assignment variable is measured with
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error (Cappelleri et al., 1991; Trochim et al., 1991). The reason
such error does not induce bias here, although it does in other
quasi-experiments, is that assignment to treatment is by the
fallible assignment variable and not by some latent underlying
selection process, as happens in quasi-experiments.

Statistical Power

It takes approximately 2.75 times as many participants in an
RD design to achieve statistical power comparable to a simple
randomized experiment, assuming equal numbers assigned to
the treatment and control groups (Goldberger, 1972). When
RD is combined with random assignment within an interval
around this cutoff, 2.48 times the number of respondents are
needed if 20% of participants are randomized, 1.96 times with
40% randomization, 1.46 with 60%, and 1.14 with 80%
(Cappelleri and Trochim, 1994, 1995, 2010).

Parametric Analysis

Assumptions of RD Analysis

Five central assumptions must be made in order for responsible
analysis of data from an RD design:

1. The cutoff criterion: The cutoff criterion must be followed
without exception. Otherwise, unless some valid adjust-
ment is made, a selection threat arises, and estimates of the
treatment effect are likely to be biased.

2. The pre–post distribution: The true pre–post distribution
must be known and correctly specified as linear, poly-
nomial, logarithmic, or the like. Reichardt et al. (1995)
point out the difficulties in specifying the appropriate
model, especially when some curvilinearity exists in the pre-
post relationship.

3. Comparison group pretest variance: There must be a suffi-
cient range of pretest values in the comparison group to
enable adequate estimation of the pre–post regression line
for that group. Variability in the treatment group is also
desirable, although not strictly required because one can
project the comparison group line even to a single treatment
group point.

4. Continuous pretest distribution: Both groups must come
from a single continuous pretest distribution. In some cases
one might find intact groups that serendipitously divide on
a measure so as to imply some cutoff (e.g., patients from
two different geographic locations). However, such natu-
rally discontinuous groups would confound geography
with treatment and should not be used.

5. Treatment implementation: It is assumed that the treatment
is uniformly delivered to all recipients – that is, they all
receive the same dosage, length of stay, amount of training,
or whatever. If not, it is necessary to model explicitly the
treatment as implemented, thus complicating the analysis
considerably.

A Model for the Basic RD Design

The model presented here is for the basic RD design. Given
a pretreatment assignment measure, xi, and a posttreatment

measure, yi, the model for the expected value (E) of yi can be
stated as follows:

EðyiÞ ¼ b0 þ b1zi þ b2~xi þ b3~xizi þ/þ bn�1~x
s
i þ bn~x

s
izi

where

~xi ¼ pretreatment measure for individual i minus the cutoff
value (i.e., ~xi ¼ xi � x0)

yi ¼ posttreatment measure for individual i
zi ¼ assignment variable (1 if treatment participant; 0 if

comparison participant)
s¼ the degree of the polynomial for the associated ~xi
b0 ¼ parameter for comparison group intercept at cutoff x0
b1 ¼ treatment effect parameter
b2 ¼ linear slope parameter
b3 ¼ linear interaction parameter
bn�1 ¼ parameter for the sth-order polynomial
bn ¼ parameter for the sth-order polynomial interaction term

The major null hypothesis of interest H0: b1 ¼ 0 is tested
against the alternative H1: b1 s 0. The model estimates both
main and interaction effects at the cutoff point in order to
examine changes in means and slopes. It postulates a poly-
nomial pre–post relationship. It also requires subtracting the
cutoff score from each pretest score. The term ~xi has
a superscript tilde to indicate this transformation of the
pretest xi.

Finally, the model allows for any order of polynomial
function (although certain restrictions are made in specifying
the function as described below). Thus, the true pre–post
relationship can in theory be linear, quadratic, cubic, quartic,
and so on.

In the simplest model with no interaction term, which
includes only treatment and the pretest (pretreatment)
assignment covariate as predictors, the treatment effect ðb1Þ is
constant across pretest assignment scores and, therefore, the
same at the cutoff score as any other pretest score on the
assignment continuum. In a model with a linear treatment-by-
pretest interaction, the treatment effect is no longer constant
across the (pretest) assignment continuum but depends line-
arly on the value of the pretest assignment score, allowing for
the population slopes of the pre–post relationship to differ on
opposite sides of the discontinuity.

Model Specification

The key analytic problem is correctly specifying the model for
the data – in this example, as a polynomial model. No simple
or mechanical way exists to determine definitively the appro-
priate model. As is the case with any judicious statistical
modeling, the RD analysis requires judgment and discretion,
along with conducting multiple analyses based on different
assumptions about the true pre–post relationship.

Steps in the Analysis

Recall what data the basic RD design provides on each unit.
There is a pretest assignment value xi in the model. Knowing
this and the cutoff value allows creating a new variable zi,
which is equal to 1 in the treatment group and 0 if not. Finally,
there is a posttest (or posttreatment) score labeled yi in the

Regression Discontinuity Design 155



model. Given the variables xi, zi, and yi, the steps to be followed
in the polynomial analysis are as follows:

1. Transform the pretest

The analysis begins by subtracting the cutoff value from
each pretest score thus creating the term ~xi as in the model. This
sets the intercept equal to the cutoff so that estimates of effect
are made at the cutoff rather than at xi¼ 0.

2. Examine the relationship visually

It is important to determine whether there is any visually
discernible discontinuity at the cutoff. It could be a change in
level, slope, or both. If a discontinuity is visually clear at the
cutoff one should not be satisfied with analytic results that
indicate no effect. However, if no discontinuity is apparent,
variability in the data may be masking an effect, and one must
attend carefully to the analytic results.

The second thing to look for is the degree of polynomial
that may be required as indicated by the overall slope of the
distribution, but particularly in the comparison group part. A
good approach is to count the number of flexion points (how
often the distribution ‘flexes’ or ‘bends’). A linear distribution
implies no flexion points, while a single flexion point would
indicate a quadratic function, and so on, such that the esti-
mated polynomial is equal to one order less than the total
number of flexion points (i.e., with two flexion points one
would hypothesize a cubic or third-order polynomial). This
information is used to specify the initial model.

3. Create higher order terms and interactions

Depending on the number of flexion points, create trans-
formations of the transformed assignment variable ~xi. The rule
of thumb is to go two orders of polynomial higher than indi-
cated by the number of flexion points. Thus, if the bivariate
relationship appeared linear (i.e., no flexion points), one
would want to create transformations up to a second-order
(0þ 2) polynomial. The first-order polynomial already exists
in the model ð~xiÞ, and one would only have to create the
second-order polynomial by squaring ~xi to obtain ~x2i . For each
transformation of ~xi one also creates the interaction term by
multiplying the polynomial by zi. In this example there would
be two interaction terms: ~xizi and ~x2i zi. If there seems to be two
flexion points in the bivariate distribution, one would then
create transformations up to the fourth (2þ 2) power and their
interactions. This rule of thumb errs toward overestimating the
true polynomial function needed, for reasons outlined in
Trochim (1984).

4. Estimate the initial model

The true analysis can now begin. One simply regresses the
posttest scores, yi, on ~xi, zi and all higher order transformations
and interactions created in step 3 above. The regression coef-
ficient associated with the zi term (i.e., the group membership
variable) is the estimate of the main effect of the treatment. If
there is a vertical discontinuity at the cutoff it will be estimated
by this coefficient. One can test the significance of the coeffi-
cient (or any other) by constructing a standard t-test. If the
analyst correctly overestimated the polynomial function
required to model the distribution at step 3, then the treatment
effect estimate will be unbiased. However, by initially

including terms that may not be needed in the true model, the
estimate is likely to be inefficient, that is, standard error terms
will be inflated and statistical significance underestimated.
However, if the coefficient for the effect is highly significant in
this initial model, it would be reasonable to conclude there is
an effect. Interaction effects can also be examined. A linear
interaction is implied by a significant coefficient for the ~xizi
term.

5. Refine the model

The procedure described thus far is conservative, designed
to reduce the chances of a biased treatment effect estimate even
at the risk of increasing the error of the estimate (Trochim,
1984). Therefore, on the basis of the results of step 4 one might
wish to attempt to remove apparently unnecessary terms and
reestimate the treatment effect with greater efficiency. This is
tricky and should be approached with caution lest it introduces
bias. One should certainly examine the regression results from
step 4, noting the degree to which the overall model fits the
data, the presence of any insignificant coefficients, and the
pattern of residuals. One might examine the highest order term
in the current model and its interaction. If both coefficients are
nonsignificant, and the goodness-of-fit measures and pattern of
residuals indicate a good fit, one might then drop these two
terms and reestimate the model. One would repeat this
procedure until (1) all the coefficients are significant, (2) the
goodness-of-fit measure drops appreciably, or (3) the pattern
of residuals indicates a poor fit.

Analyses with Multiple Cutoff Points

The basic model described above can be applied directly
when multiple cutoff points are used and random assign-
ment is followed within cutoff intervals. If assignment
within intervals is nonrandom, one must also address the
potential for selection bias in the analysis. When multiple
cutoffs are used to distinguish separate treatments (i.e.,
multiple treatments are not assigned within the same cutoff
interval), one would have to construct multiple treatment
assignment variables for the analytic model (e.g., z1, z2, z3)
and all necessary interaction terms. Clearly, as more cutoffs
and groups are added, model specification becomes more
complex.

Analyses with Multiple Assignment Measures

Imagine having multiple measures, each with its own cutoff.
Each assignment measure is then transformed by having its
own cutoff value subtracted from it to create ~xi. The analysis
would then include all transformed assignment measures,
group membership, higher order terms, and interactions. For
the simple first-order (or linear) case, one could use the
following model:

EðyiÞ ¼ b0 þ b1zi þ b2~x1i þ b3~x2i þ b4~x3i þ b5~x1izi þ b6~x2izi

þ b7~x3izi

This model does not include any two-way assignment
variable multiplicative terms (e.g., ~x1ix2i or ~x1ix2izi) or any
three-way assignment variable multiplicative terms (e.g.,
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~x1ix2ix3i or ~x1ix2ix3izi), but such an assumption may be
reasonable where primary interest is in estimating b1, the
treatment effect at the cutoff, and not interactions. Clearly,
however, the use of multiple assignment variables with higher
order polynomial models will quickly lead to an unwieldy
analysis.

The situation is simpler whenmultiple assignment variables
are rescaled to reflect the number of assignment variables on
which a person meets the criterion (e.g., on 5 of 10). This
number then becomes the xi variable, and one would conduct
the basic analysis described earlier. When multiple assignment
variables are combined into a single index, the analysis is also
a straightforward application of the basic procedures described
initially.

Recent Methodological Developments

Nonparametric Statistical Analysis

As noted, the most serious limitation of RD designs is the
possible sensitivity of the functional form between the posttest
outcome and pretest assignment covariate. Traditionally,
parametric models with polynomial regression have been used
to analyze RD design. If the extrapolation beyond the cutoff
score is not adequate, then what masquerades as a jump due to
treatment might simply be a nonlinear relationship showing
no real treatment effect.

To reduce the likelihood of such mistakes, economists have
proposed and implemented nonparametric approaches that
look only at the data in the neighborhood around the cutoff
score (Hahn et al., 2001; Ludwig and Miller, 2007; Imbens and
Lemieux, 2008; Angrist and Pischke, 2009). Comparisons of
average outcome scores in small-enough neighborhoods to the
left and right of the cutoff can be estimated in a way that does
not depend on the correct functional form. Instead of
providing a constant treatment effect generalizable across all
values of the pretest assignment covariate (in the case of
a model with no pretest-treatment interaction), as occurs with
the parametric approach, the average treatment effect in the
nonparametric approach is restricted to (and conditional on)
the cutoff score.

The nonparametric approach to RD requires good esti-
mates of the mean posttreatment scores in small neighbor-
hoods to the immediate right and left of the cutoff. However,
such estimation can be tricky. One notably conspicuous
problem is the sparse or limited data in a small neighborhood
of the cutoff means. Local linear regression, a nonparametric
smoothing technique, has been proposed to address the
typically relatively scant data around the cutoff means (Hahn
et al., 2001; Imbens and Lemieux, 2008; Angrist and Pischke,
2009).

Nonparametric RD estimation is not without its short-
comings (Bloom, 2012). The method requires very large
samples to provide an adequate number of observations in the
two bandwidths adjacent to the cutoff point. Another limita-
tion is the potential sensitivity of nonparametric estimations to
the choice of bandwidth. A trade-off is needed between, on the
one hand, introducing bias from a bandwidth that is too wide
and, on the other hand, losing precision from a bandwidth that
is too narrow. The most widely used empirical approach for

making such a trade-off is cross-validation (Imbens and
Lemieux, 2008).

Fuzzy RD Design

As noted previously, a violation of the assignment rule to
treatment and comparison groups results in a fuzzy RD design.
Here external factors result in individuals being placed in one
group when they should have been placed in the other group
according to their pretreatment assignment score. A conven-
tional analysis of a fuzzy RD design, which does not account
for this misassignment, would result in a biased treatment
effect. Under certain circumstances, a potential solution to
obtain an unbiased treatment effect in the fuzzy RD design is
to apply the technique of instrumental variables (Angrist and
Pischke, 2009; Murnane and Willett, 2011). Here the
pretreatment (or pretest) assignment measure can serve as
a credible instrumental variable for actual group membership
if this pretreatment assignment measure predicts actual group
membership and, at the same time, is not directly related to
the posttreatment measure.

A two-stage least squares regression method (a parametric
approach based on ordinary least squares) to instrumental
variable estimation has been proposed and applied to analyze
the fuzzy RD design (Jacob and Lefgren, 2004; Angrist and
Pischke, 2009; Murnane andWillett, 2011). The nonparametric
version of fuzzy RD consists of instrumental variable estima-
tion in a small neighborhood around the discontinuity. Hahn
et al. (2001) developed a nonparametric procedure for instru-
mental variables using local linear regression around the cutoff,
which was applied to estimate the effect of class size on chil-
drens’ test scores (Angrist and Lavy, 1999).

In research related to instrumental variables, Battistin and
Retorre (2008) and Bloom (2012) provide additional insights
and expanded paradigms for fuzzy RD designs. They provide
conditions that are required to make fuzzy RD designs valid in
identifying average treatment effects.

Design Variations

Building on previous research on logistical and analytical
issues of RD designs with varying amounts of randomization
(Trochim and Cappelleri, 1992; Cappelleri and Trochim,
1994, 1995, 2010; Cappelleri et al., 1994), Mandell (2008)
provides extended formulations and insights into this hybrid
design in which cutoff-based assignment and random assign-
ment are combined depending on values of the pretreatment
assignment indicator to experimental conditions. Different
hybrid designs can have varying degrees of randomization and
discontinuity. They entail smaller sacrifices in statistical effi-
ciency than the basic or pure RD design (which has no
randomization embedded within it) and are also likely, in
certain circumstances, to be judged considerably fairer than
a true randomized experiment and possibly even a pure RD
design.

Another variation is the clustered RD design where
groups (rather than individuals) are assigned to an inter-
vention. Considerably more methodological work has been
performed on the design and analysis of RD designs when
treatments are applied to individuals (Shadish et al., 2002;
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Imbens and Lemieux, 2008) than to groups. More recently,
however, increased methodological research on RD designs
has been applied in the context of community or group-
level interventions. The clustered RD design, for example,
was the primary design to evaluate the federal education
program mandated in the No Child Left Behind Act of 2001
(Gamse et al., 2008). Motivated by ‘No Child Left Behind,’
Schochet (2009) examined the statistical power under such
clustered RD designs (without randomization) using tech-
niques from the causal inference and hierarchical linear
modeling literature. The main conclusion is that three to
four times larger samples are typically required under the
clustered RD design than under the clustered randomized
design to achieve estimates of effects with the same level of
precision.

Pennell et al. (2011) noted that designs in education are
often quite different from designs used in public health and
investigated the design and analysis of clustered RD designs
in which a varying proportion of groups is randomized.
These researchers extend upon previous work to consider
analysis, statistical power, and sample size implications of
RD designs in community-based intervention studies in
public health. In doing so they examined the power of
these designs as a function of the intraclass correlation,
number of groups, and number of members per group and
compared the results with the traditional group randomized
trial.

Variations on the RD design can also be distinguished by
the nature of the assignment. Research on the RD design has
typically focused on applications with a single assignment
variable. In many settings, however, it may be more
appropriate to impose cutoffs on several assignment vari-
ables in defining a set of different treatments. For instance,
cutoffs on two assignment variables in a basic RD design
would result in two dimensions with four treatment regions.
By using regression to model the response surface in each
region, and obtaining predicted values along each of the
discontinuity edges, Papay et al. (2011) show how to
generalize the basic RD design to include multiple assign-
ment variables simultaneously and to estimate the effects of
several treatments.

Conclusions

From a methodological point of view, inferences drawn from
a well-implemented RD design are considered comparable in
internal validity to conclusions from randomized experiments.
However, the lower statistical efficiency of RD designs, and the
resulting sample size demands, may limit the design’s utility.
From an ethical perspective, RD designs are compatible with
the goal of getting the treatment to those most deserving or in
need. It is not necessary to deny the treatment from potentially
deserving recipients simply for the sake of a scientific test. From
an administrative viewpoint, the RD design may be directly
usable when allocation formulas are the basis for assigning
treatment or treatments.

With all these considerations in mind, the RD design must
be used judiciously. In general, the randomized experiment is
still the method of first choice when assessing causal

hypotheses (Cappelleri and Trochim, 2010). However, where
they are ruled out as impractical, the RD design should be
considered as a practical high-quality alternative.

See also: Causal Counterfactuals in Social Science Research;
Comparative Studies: Method and Design; Control Variables in
Research; External Validity; Internal Validity; Nonequivalent
Group Designs.
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